Linear Algebra Notes
本人由于缓考辽,所以还在努力学习线代以及微积分,在这里post上一些线代的笔记,持续更新
感觉偏离这个Blog创建的初衷越来越远了
发现blog备份压根没备份好,post全不见了,就找到一个去年5月的,寄!
Have a lot waiting to be written, but just post them for convenience.
RSA is the first full public-key cryptosystem.
All operations in RSA involve modular exponentiation.
Modular exponentiation is exponentiation performed over a modulus.
Modular exponentiation is the remainder when an integer \(b\) (the base) is raised to the power \(e\) (the exponent), and divided by a positive integer \(m\) (the modulus); that is, \(c=b^e \mod m\). Form the definition of division, it follows that \(0 \leq c < m\).
Modular exponentiation can be performed with a negative exponent \(e\) by finding the modular multiplicative inverse \(d\) of \(b\) modulo \(m\) using the extended Euclidean algorithm. \[ c=b^e \mod m=d^{-e} \mod m,where \space e<0 \space and \space b\cdot d \equiv 1\mod m \]
In RSA, modular exponentiation, together with the problem of prime factorisation, helps us to build a "trapdoor function". This is a function that is easy to compute in one direction, but hard to do in reverse unless you have the right information. It allows us to encrypt a message, and only the person with the key can perform the inverse operation to decrypt it.
令一个自变量固定,研究一个自变量的变化率
定义(偏导数):设函数z=f(x,y)在点\((x_0,y_0)\)的某一邻域U\((x_0,y_0)\)内有定义,当自变量y固定在\(y=y_0\),而x在\(x_0\)有改变量\(\Delta x,(x_0+\Delta x,y_0)\in U(x_0,y_0)\)时,相应地,函数f有改变量 \[ f(x_0+\Delta x,y_0)-f(x_0,y_0) \] 如果极限 \[ \lim _{\Delta x\to 0}\frac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x} \] 存在,则称此极限值为函数\(z=f(x,y)\)在点\((x_0,y_0)\)处对x的偏导数,记作 \[ f_x(x_0,y_0),\frac{\partial f(x_0,y_0)}{\partial x},z_x(x_0,y_0)或\frac{\partial z}{\partial x} |_{(x_0,y_0)} \] 即 \[ f_x(x_0,y_0)=\frac{\partial f(x_0,y_0)}{\partial x}=\lim _{\Delta x\to 0}\frac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x} \]
将质心位矢\(\mathbf{r_c}=\frac{\sum(m_i\mathbf{r_i})}{m}\),对时间求导得到质心运动的速度 \[ \mathbf{v_c}=\frac{d\mathbf{r_c}}{dt}=\frac{1}{m}\sum(m_i\mathbf{v_i}) \] 可以得到 \[ m\mathbf{v_c}=\sum(m_i\mathbf{v_i}) \] 质点的动量等于该质点系的质量与质心速度的乘积,即 \[ \mathbf{p}=m\mathbf{v_c} \] 质点系的总动量p的时间变化率即为该质点系所收到的合外力F \[ \mathbf{F}=\frac{d\mathbf{p}}{dt}=m\frac{d\mathbf{v_c}}{dt} \] 式中\(\frac{d\mathbf{v_c}}{dt}\)为质心加速度,以\(\mathbf{a_c}\)表示,则有 \[ \mathbf{F}=\frac{d\mathbf{p}}{dt}=m\mathbf{a_c} \] 质点系的质量与其质心加速度的乘积等于该质点系所受到的合外力
数据表示的本质是数据结构设计,数据处理的本质是算法设计。
算法+数据结构=程序 ——Niklaus Wirth
数据结构解决数据如何存储的问题,算法解决如何操作数据的问题。
缓考个人复习用,详细部分在个人未细化的知识点。
大部分资料来源于《C++程序设计》刘瑞芳主编。
集中在数据类型:
函数:
指针(重点):
指针的基本使用
动态内存
引用(类型名 &变量名)
指针与函数
指针与数组/结构体
const的一点知识
课后习题答案:https://blog.csdn.net/Slatter/article/details/93309541
CTF这周又被成功的出脑了,光搞数学去了。
虽然还写了一页buuctf的题,但感觉没啥价值,还得先把之前那几场比赛的题以及涉及到的知识点弄明白先
一向直性子的范大将军直言:
“诶哟,谢天谢地了,我已经说了,你像这样的比赛本身就没有打好基础,你能跟我保证在关键的比赛能赢?务实一点,我劝你先把数学这个理念先搞懂。”
还被阿根廷球迷舍友拉去看世界杯了()
昨晚凌晨进球,整栋宿舍楼在震,迷迷糊糊垂死病中惊坐起。
小明在打geekgame,小美在学no_F5动调,小陈在学Linear Algebra,他们都有光明的未来(
正经人谁打geekgame啊
geekgame一道题不会写,只好跑来写写线代的部分总结定理大全了